hit counter script

Understanding Rstp; Port Roles And The Active Topology - Cisco Catalyst 2960 Software Configuration Manual

Hide thumbs Also See for Catalyst 2960:
Table of Contents

Advertisement

Chapter 17
Configuring MSTP
Interoperability with IEEE 802.1D STP
A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate
with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU
(a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDUs on that port. An MSTP
switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MSTP
BPDU (Version 3) associated with a different region, or an RSTP BPDU (Version 2).
However, the switch does not automatically revert to the MSTP mode if it no longer receives
IEEE 802.1D BPDUs because it cannot detect whether the legacy switch has been removed from the link
unless the legacy switch is the designated switch. A switch might also continue to assign a boundary role
to a port when the switch to which this switch is connected has joined the region. To restart the protocol
migration process (force the renegotiation with neighboring switches), use the clear spanning-tree
detected-protocols privileged EXEC command.
If all the legacy switches on the link are RSTP switches, they can process MSTP BPDUs as if they are
RSTP BPDUs. Therefore, MSTP switches send either a Version 0 configuration and TCN BPDUs or
Version 3 MSTP BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch
of which is either a single spanning-tree switch or a switch with a different MST configuration.

Understanding RSTP

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree.
Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the
default settings in the IEEE 802.1D spanning tree).
For configuration information, see the

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by learning the
active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch
priority (lowest numerical priority value) as the root switch as described in the
and BPDUs" section on page
OL-26520-01
Port Roles and the Active Topology, page 17-9
Rapid Convergence, page 17-10
Synchronization of Port Roles, page 17-11
Bridge Protocol Data Unit Format and Processing, page 17-12
16-3. Then the RSTP assigns one of these port roles to individual ports:
Root port—Provides the best path (lowest cost) when the switch forwards packets to the root switch.
Designated port—Connects to the designated switch, which incurs the lowest path cost when
forwarding packets from that LAN to the root switch. The port through which the designated switch
is attached to the LAN is called the designated port.
Alternate port—Offers an alternate path toward the root switch to that provided by the current root
port.
Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the
spanning tree. A backup port can exist only when two ports are connected in a loopback by a
point-to-point link or when a switch has two or more connections to a shared LAN segment.
Disabled port—Has no role within the operation of the spanning tree.
Catalyst 2960 and 2960-S Switches Software Configuration Guide, Release 15.0(1)SE
"Configuring MSTP Features" section on page
Understanding RSTP
17-14.
"Spanning-Tree Topology
17-9

Advertisement

Table of Contents
loading

This manual is also suitable for:

Catalyst 2960-s

Table of Contents